Report as of FY2008 for 2008PA87B: "Controls on nitrogen and phosphorous transport and fate in northern Appalachian streams" ## **Publications** - Conference Proceedings: - ♦ Kerr, PC, and MN Gooseff. 2008.Comparison of model structure in multiple-transient storage modeling of solute transport in streams: Nested versus competing storage zones. American Geophysical Union Fall Meeting, San Francisco (H11B). - ◆ Gooseff, MN, MA Briggs, PC Kerr, MR Weaver, W Wollheim, BJ Peterson, K Morkeski, and CS Hopkinson. 2009. Separating in-channel and hyporheic transient storage processes in river networks A path toward improved quantification of stream-groundwater interactions. Joint Assembly of the American Geophysical Union (H71D-02). ## **Report Follows** ## PRINCIPAL FINDINGS AND SIGNIFICANCE In this project, we conducted repeated whole stream nutrient additions of NO_3 and PO_4 , each individually and a third addition of the two combined ($NO_3 + PO_4$) to determine whether the presence of both nutrients would enhance uptake of one or the other (in all addition experiments NaCl was also added as a conservative tracer). We expected that the elevated presence of both nutrients would result in less potential for limitation or saturation of one nutrient or the other (i.e., as might be expected in single-nutrient addition experiments). We performed 5 'sets' of these 3 addition types in three small streams in central Pennsylvania (Table 1). Table 1. Details of sites, conditions, and addition experiments. | Experiment | Date | Addition | Q (L/s) | Reach length (m) | |-----------------|----------|----------------------------------|---------|------------------| | Benner Run 1 | 06/15/08 | NO_3 | 110 | 340 | | Benner Run 1 | 06/16/08 | PO_4 | 110 | 340 | | Benner Run 1 | 06/17/08 | NO ₃ +PO ₄ | 110 | 340 | | Benner Run 2 | 07/14/08 | NO_3 | 57 | 460 | | Benner Run 2 | 07/15/08 | PO_4 | 57 | 460 | | Benner Run 2 | 07/17/08 | NO ₃ +PO ₄ | 57 | 460 | | Laurel Run 1 | 06/24/08 | NO_3 | 70 | 460 | | Laurel Run 1 | 06/25/08 | PO_4 | 70 | 460 | | Laurel Run 1 | 06/26/08 | NO ₃ +PO ₄ | 70 | 460 | | Laurel Run 2 | 07/21/08 | NO_3 | 30 | 460 | | Laurel Run 2 | 07/22/08 | PO_4 | 30 | 460 | | Laurel Run 2 | 07/23/08 | NO ₃ +PO ₄ | 30 | 460 | | Leading Ridge 1 | 08/09/08 | NO_3 | 0.25 | 200 | | Leading Ridge 1 | 08/11/08 | PO_4 | 0.25 | 200 | | Leading Ridge 1 | 08/14/08 | NO ₃ +PO ₄ | 0.25 | 200 | Our analysis of computed uptake lengths (S_W – the average distance a nutrient molecule travels downstream before being taken up) suggests that, on average, NO₃ uptake is enhanced by the presence of elevated concentrations of PO₄. The average NO₃ S_W during NO₃-only injections was 32,567 m, whereas during the coupled NO₃+PO₄ additions, the average S_W for NO₃ was 14,077 m. However, both sets of NO₃ S_W data are quite variable, ranging from -5000m to 142,857m for NO₃-only injections and from -50,000 m to 50,000 m in coupled additions (Figure 1A). Our analysis of computed S_W values for PO₄ suggests that, on average, there is little to no effect from the presence of elevated NO₃ concentrations. The average of PO₄ S_W during PO₄-only injections was 4,800 m, whereas during the coupled NO₃+PO₄ additions, the average S_W for PO₄ was 4,857 m. There is less variability in PO₄ S_W data, compared to NO₃ S_W data, ranging from -5000m to 25,000m for PO₄-only injections and from 44 m to 10,000 m in coupled additions (Figure 1B). It is interesting to note that during coupled additions, all PO₄ S_W values were greater than 0. Accounting for stream flow velocity, we can compare nutrient uptake velocities ($v_f = (u^*d)/S_W$, where u is stream flow velocity and d is average depth). For NO₃, this analysis suggests a reduced demand, on average, during coupled additions (1.16x10⁻⁵ m/s) compared to during NO₃-only additions (8.10x10⁻⁵ m/s). Uptake velocity values for NO₃ ranged from -3.3x10⁻⁵ to 3.14x10⁻⁴ m/s for NO₃-only additions and from -7.6x10⁻⁵ to 6.98x10⁻⁵ m/s for coupled additions (Figure 1C). The opposite interpretation comes from the analysis of PO₄ uptake lengths, which average 9.27x10⁻⁴ m/s for PO₄-only additions and 1.05x10⁻³ for coupled additions. This comparison of greater PO₄ demand in coupled additions is evident in 4 of the 5 addition experiments (Figure 1D). The goal of this research project was to determine whether the interpretation of single nutrient addition experiments was likely to be modified significantly by co-addition of another typically limiting nutrient. Our results indicate that 1) uptake lengths are long and nutrient demand is fairly small in these streams, compared to values published in other temperate, forested catchment streams, and 2) there is not a consistent trend of increased NO₃ or PO₄ uptake during additions of both nutrients compared to the addition of each alone. Whereas these streams represent only a single stream type, the findings are significant in suggesting that single nutrient addition experiments are useful in characterizing the dynamics of that individual nutrient. Furthermore, the stoichiometry of uptake, beyond background ratios does not appear to dramatically influence nutrient demand. Given the challenges faced by resource managers as society deals with increased nutrient loading to streams and ultimately coastal areas, the findings from this research suggest that co-additions of nutrients as a means of exploring nutrient uptake dynamics is not likely to provide new breakthroughs. However, using the standard methods here, it was not possible to determine whether full cycling of N or P had been completed during the addition experiments. That is, we could not determine separately rates of uptake and production separately. Hence, it may be possible with the inclusion of isotopic tracers of NO₃ or PO₄ to further evaluate specific rates of N or P processing. Figure 1. Summary results from 5 sets of whole stream nutrient addition experiments comparing A) nitrate (NO_3) and B) phosphate (PO_4) uptake lengths (S_W) and C) nitrate and D) phosphate uptake velocities (v_f) in nitrate-only and nitrate+phosphate addition experiments. * indicates that uptake lengths were negative (i.e., nutrient was indicated to be produced rather than taken up) over the reach length of interest. See Table 1 for addition experiment details. Note in panel A, the uptake length for Laurel Run 1 during the NO_3 -only addition is 142,857 m.